# Communication Lower Bounds of Key-Agreement Protocols via Density Increment Arguments

Mi-Ying (Miryam) Huang

Xinyu Mao

Guangxu Yang

Jiapeng Zhang



### Key-Agreement Protocols in the ROM



Correctness:  $key_A = key_B$  (w.h.p.)

Security: any attacker sees the transcript and makes a few queries cannot guess  $key_A$ .

### Upper Bounds: Merkle Puzzle [Merkle 78]



### Correctness:

- ► Set  $N := 10\ell^2$ ,  $|\{x_1, \dots, x_\ell\} \cap \{y_1, \dots, y_\ell\}| = 1$  w.h.p. by birthday paradox.
- ▶ If *M* is large enough,  $key_A = key_B$  w.h.p.
- Security: the shared key  $x^*$  is uniformly distributed  $\rightarrow$  The attacker should makes at least  $\Omega(\ell^2)$  queries.

Merkle puzzle only provides a quadratic gap between the efficiency of the honest parties and the attacker.

3

#### Can we do better ?

[Noam23] proposed a variant of the Merkle Puzzle with perfect completeness and the same security.

### Previous Lower bounds:

Impagliazzo and Rudich [IR89]

Any key agreement protocol where Alice and Bob each make  $\ell$  queries can be broken by the attacker with  $O(\ell^6)$  queries.

Barak and Mahmoody [BM09]

Any key agreement protocol where Alice and Bob each make  $\ell$  queries can be broken by the attacker with  $O(\ell^2)$  queries.

Heavy queries  $Pr[q \in Q(V)] \ge \varepsilon.$ 

Intersection queries

Merkel Puzzle is optimal w.r.t. query complexity of the attacker!

The heavy query techniques have found wide applications in the context of black-box separations and the power of random oracles in secure two-party computation [KSY11, BKSY11, MP12, DSLMM11, MMP14, HOZ13].

4



### Communication Lower bounds

The amount of communication bits between Alice and Bob is also Important in practice! For example, in Merkle's Puzzles, Alice and Bob need to exchange  $\Omega(\ell)$  bits.

Conjecture [HMOYR18]

Any  $\ell$ -query and c bits communication KA non-adaptive protocols could be broken by the attacker with  $O(c\ell)$ -queries.

Non-adaptive: Alice and Bob decide their queries before protocol execution, i.e., their queries are fully determined by their internal randomness.

Theorem [HMOYR18]

Any  $\ell$ -query and c bits communication KA non-adaptive two rounds protocols could be broken by the attacker with  $O(c\ell)$ -queries.

Heavy queries and analyze the communication cost via ad hoc techniques

## Our Contribution

#### Main Theorem

Any  $\ell$ -query and c bits communication KA non-adaptive and prefect completeness protocols could be broken by the attacker with  $O(c\ell)$ -queries.

**Perfect Completeness:**  $Pr[Key_A = Key_B] = 1$ 

#### The protocol in [Noam23] is optimal.

#### **Technical contribution:**

- 1. Correlated queries: the queries are not only heavy queries but also highly related to communication transcripts.
- 2. Analyze the communication cost via density increment arguments.



### **Correlated Queries**

**Correlated Query** 

Let  $\tau$  be a transcript and L be the current queries of the attacker .We say  $S \subseteq [N]$  is  $\epsilon$ -correlated w.r.t. attacker's view  $(\tau, L)$  if

 $\mathbf{H}(\boldsymbol{F}(S)|\boldsymbol{R}_{\boldsymbol{A}},\boldsymbol{R}_{\boldsymbol{B}},L)-\mathbf{H}(\boldsymbol{F}(S)|\boldsymbol{R}_{\boldsymbol{A}},\boldsymbol{R}_{\boldsymbol{B}},L,\tau)\geq\epsilon$ 

#### Algorithm of the attacker:

Initialize i = 0 and  $L = \emptyset$ . While exists  $S \subseteq [N]$  is  $\epsilon$ -correlated w.r.t. the attack's view  $(\tau, L)$  with  $|S| \le \ell$ : Query F on S and receive F(S). Update  $L = L \cup (S, F(S))$  and i = i + 1. How to bound the expected number of iterations? Output  $b = \max_{i \in \{0,1\}} \Pr_{v \leftarrow (R_A, R_B, F)|_{\tau,L}} [Key_A(v) = i]$ .

 $(R_A, R_B, F)|_{\tau,L}$  is the distribution of all possible execution condition on communication transcript  $\tau$  and queries L.

### Density Increment Argument

#### **Density Function**

Let  $\tau$  be a transcript and L be the queries of the attacker, the density function  $\Phi(\tau, L)$  is defined as follows:

 $\Phi(\tau, L) = \mathbf{H}(F | R_A, R_B, L) - \mathbf{H}(F | R_A, R_B, L, \tau)$ 

Lemma 1: The expected number of iterations of the algorithm is  $O(CC(\Pi)/\epsilon)$ .

 $\Phi(\tau, \emptyset) \longrightarrow \Phi(\tau, L_1) \longrightarrow \Phi(\tau, L_1 \cup L_2) \longrightarrow \dots \longrightarrow \Phi(\tau, L_1 \cup \dots \cup L_c)$ 

#### By Chain Rule,

the density function  $\Phi$  decreases at least  $\epsilon$  in expectation after  $\epsilon$ -correlated queries in each iteration.

Notice that the density function  $\Phi$  is always non-negative since F is a uniform distribution condition on  $(R_A, R_B, L)$ .

Thus, the expected number of iterations given  $\tau$  is  $\frac{\Phi(\tau, \emptyset)}{\epsilon}$  and the expected number of iterations given protocol  $\Pi$  is

$$\mathbb{E}_{\tau \leftarrow \Pi} \left[ \frac{\Phi(\tau, \emptyset)}{\epsilon} \right] \le \frac{H(F|R_A, R_B, L) - H(F|R_A, R_B, L, \Pi)}{\epsilon} \le \frac{H(\Pi)}{\epsilon} \le \frac{CC(\Pi)}{\epsilon}$$

### Summary and Proof Outline

#### Main Theorem

Any  $\ell$ -query and c bits communication KA non-adaptive and prefect completeness protocols could be broken by the attacker with  $O(c\ell)$ -queries.

The proof outline is as follows:

Algorithm: The attacker queries the  $\epsilon$ -correlated queries in each iteration and outputs the majority of the possible output based on it's view  $(\tau, L)$ .

**Lemma 1:** The expected number of iterations of the algorithm is  $O(CC(\Pi)/\epsilon)$ .

Proved by density increment arguments.

Lemma 2: The success probability of the algorithm is at least  $1 - \sqrt{\epsilon}$ .

Proved by the rectangle view in communication complexity. We omitted the proof in this talk



### **Open Problems**

#### Main Theorem

Any  $\ell$ -query and c bits communication KA non-adaptive and prefect completeness protocols could be broken by the attacker with  $O(c\ell)$ -queries.

Imperfect completeness?

Adaptive protocols?

Other applications via our density increment argument or correlated queries?

### Thank you for listening 🙂