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Key-Agreement Protocols in the ROM

Security: any attacker sees the transcript and makes a few queries cannot guess 𝑘𝑒𝑦!.
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⋮
Communication

Ouput 𝑘𝑒𝑦! Ouput 𝑘𝑒𝑦"

Alice BobAttacker

Random function ∶
𝐹: 𝑁 → [𝑀]

Idealization of symmetric primitives
E.g., one-way function, collision-
resistant hash function

Correctness: 𝑘𝑒𝑦!= 𝑘𝑒𝑦"  (w.h.p.)



Upper Bounds: Merkle Puzzle [Merkle 78]

u Correctness:

u Set 𝑁 ≔ 10ℓ#, 𝑥$, … , 𝑥ℓ ∩ 𝑦$, … , 𝑦ℓ = 1 w.h.p. by birthday paradox.

u If 𝑀 is large enough, 𝑘𝑒𝑦! = 𝑘𝑒𝑦" w.h.p.

u Security: the shared key 𝑥∗ is uniformly distributed àThe attacker
should makes at least Ω(ℓ") queries.
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𝐹 𝑥$ , … , 𝐹 𝑥ℓ

Random function 
𝐹: 𝑁 → [𝑀]

Ouput 𝑘𝑒𝑦! ≔ 𝑥&

Send  𝐹 𝑥$ , … , 𝐹 𝑥ℓ   

Output 𝑘𝑒𝑦" ≔ 𝑦'

Merkle puzzle only provides a 
quadratic gap between the efficiency 
of the honest parties and the attacker.

Can we do better ?

[Noam23] proposed a variant of the Merkle Puzzle with perfect completeness and the same security.   

𝐹 𝑦'

Send 𝐹 𝑦'  If ∃ 𝑖 ∈ ℓ 𝑠. 𝑡. 𝐹 𝑦' = 𝐹(𝑥&)

Sample 𝑥$ , … , 𝑥ℓ ← 𝑁
Query the oracle to get 
𝐹 𝑥$ , … , 𝐹 𝑥ℓ ∈ [𝑀]

Sample 𝑦$ , … , 𝑦ℓ ← 𝑁
Query the oracle to get 
𝐹 𝑦$ , … , 𝐹 𝑦ℓ ∈ [𝑀]



Previous Lower bounds: 4

Any key agreement protocol where Alice and Bob each make ℓ queries can be broken by 
the attacker with O(ℓ() queries.

Impagliazzo and Rudich [IR89]

Barak and Mahmoody [BM09]

Any key agreement protocol where Alice and Bob each make ℓ queries can be broken by 
the attacker with O(ℓ#) queries.

Intersection queries 

The heavy query techniques have found wide applications in the context of black-box separations and the power 
of random oracles in secure two-party computation [KSY11, BKSY11, MP12, DSLMM11, MMP14, HOZ13].

Heavy queries 

Pr[q ∈ Q(V)] ≥ ε.

Merkel Puzzle is optimal w.r.t. query complexity of the attacker!
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Non-adaptive: Alice and Bob decide their queries before protocol execution, i.e.,  their queries are
fully determined by their internal randomness.

Conjecture [HMOYR18] 

Any ℓ-query and c bits communication KA non-adaptive protocols could be broken by the attacker 
with 𝑂(cℓ)-queries.

Theorem [HMOYR18] 

Any ℓ-query and c bits communication KA non-adaptive two rounds protocols could be broken
by the attacker with 𝑂(cℓ)-queries.

Heavy queries and analyze the communication cost via ad hoc techniques

The amount of communication bits between Alice and Bob is also Important in practice!
For example, in Merkle’s Puzzles, Alice and Bob need to exchange Ω(ℓ) bits.

Communication Lower bounds



Our Contribution 6

Perfect Completeness:    Pr 𝐾𝑒𝑦! = 𝐾𝑒𝑦" = 1

Main Theorem

Any ℓ-query and c bits communication KA non-adaptive and prefect completeness protocols could 
be broken by the attacker with 𝑂(cℓ)-queries.

The protocol in [Noam23] is optimal.

Technical contribution:

1、Correlated queries: the queries are not only heavy queries but also highly related to communication transcripts. 

2、Analyze the communication cost via density increment arguments.



Correlated Query

Let 𝜏 be a transcript and 𝐿 be the current queries of the attacker .We say S	⊆ 𝑁  is 𝜖-correlated w.r.t.
attacker’s view 𝜏, 𝐿 if 

𝐇 𝑭 𝑆 |𝑹𝑨 , 𝑹𝑩 , 𝐿 − 𝐇 𝑭 𝑆 | 𝑹𝑨 , 𝑹𝑩 , 𝐿, 𝜏 ≥ 𝜖

Correlated Queries

Algorithm of the attacker:

Initialize 𝑖 = 0	and 𝐿 = ∅.
While exists S	⊆ 𝑁  is 𝜖-correlated w.r.t. the attack’s view 𝜏, 𝐿 	 with 𝑆 ≤ ℓ:
   Query 𝐹	on 𝑆	 and receive 𝐹 𝑆 .
   Update 𝐿 = 𝐿 ∪ 𝑆, 𝐹 𝑆 	and 𝑖 = 𝑖 + 1.

Output  𝑏 = max
&∈{-,$}

	 Pr
	 1←(4! ,4" ,5)|#,%

[𝐾𝑒𝑦! 	(𝑣) = 𝑖] .   

(𝑅! , 𝑅" , 𝐹)|8,9 is the distribution of all possible execution condition on communication transcript 𝜏 and queries  𝐿.

How to bound the expected number of iterations? 



Density Function

Let 𝜏 be a transcript and 𝐿 be the queries of  the attacker, the density function Φ(𝜏, 𝐿) is defined as 
follows:

Φ 𝜏, 𝐿 = 𝐇 𝑭	|𝑹𝑨 , 𝑹𝑩 , 𝐿 − 𝐇 𝑭| 𝑹𝑨 , 𝑹𝑩 , 𝐿, 𝜏

Density Increment Argument

Lemma 1:   The expected number of iterations of the algorithm is 𝑂(CC(Π)/𝜖).    

By Chain Rule, 
the density function Φ	 decreases at least 𝜖 in expectation after 𝜖-correlated queries in each iteration. 

Notice that the density function Φ	 is always non-negative since 𝑭 is a uniform distribution condition on (𝑹𝑨 , 𝑹𝑩 , 𝐿).

Thus, the expected number of iterations given 𝜏 is : 8,∅
<

	 and the expected number of iterations given 
protocol Π is 

E8←= [
Φ 𝜏, ∅

𝜖
] ≤

𝐻 𝐹 𝑅! , 𝑅" , 𝐿) − 𝐻 𝐹 𝑅! , 𝑅" , 𝐿, Π)
𝜖

≤
𝐻(Π)
𝜖

≤
𝐶𝐶(Π)
𝜖

Φ 𝜏, ∅ Φ 𝜏, 𝐿$ Φ 𝜏, 𝐿$ ∪ 𝐿# Φ 𝜏, 𝐿$ ∪ ⋯∪ 𝐿>……..



Summary and Proof Outline

The proof outline is as follows:

Algorithm:   The attacker queries the 𝜖-correlated queries in each iteration and outputs the majority of the 
possible output based on it’s view 𝜏, 𝐿 .

Lemma 2:  The success probability of the algorithm is at least  1 − √𝜖.      

 Proved by the rectangle view in communication complexity.  We omitted the proof in this talk

Lemma 1:   The expected number of iterations of the algorithm is 𝑂(CC(Π)/𝜖).    

  Proved by density increment arguments.

Main Theorem

Any ℓ-query and c bits communication KA non-adaptive and prefect completeness protocols could 
be broken by the attacker with 𝑂(cℓ)-queries.



Open Problems
Main Theorem

Any ℓ-query and c bits communication KA non-adaptive and prefect completeness protocols could 
be broken by the attacker with 𝑂(cℓ)-queries.

Imperfect completeness? 

Adaptive protocols?

Other applications via our density increment argument or correlated queries?

Thank you for listening J


